Minimal Surfaces in Finite Volume Hyperbolic 3-manifolds N and in M × S, M a Finite Area Hyperbolic Surface
نویسندگان
چکیده
We consider properly immersed finite topology minimal surfaces Σ in complete finite volume hyperbolic 3-manifolds N , and in M × S, where M is a complete hyperbolic surface of finite area. We prove Σ has finite total curvature equal to 2π times the Euler characteristic χ(Σ) of Σ, and we describe the geometry of the ends of Σ. .
منابع مشابه
Minimal Surfaces in Geometric 3-manifolds
In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملNon-simple Geodesics in Hyperbolic 3-manifolds
Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...
متن کاملLocal Rigidity of Hyperbolic 3-manifolds after Dehn Surgery
It is well known that some lattices in SO(n, 1) can be nontrivially deformed when included in SO(n+1, 1) (e.g., via bending on a totally geodesic hypersurface); this contrasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the first examples of lattices in SO(3, 1) which are locally rigid in SO(4, 1) by considering closed hyperbolic 3-manifolds obtained by Dehn fil...
متن کاملAn Algorithm for the Euclidean Cell Decomposition of a Cusped Strictly Convex Projective Surface∗
Cooper and Long generalised Epstein and Penner’s Euclidean cell decomposition of cusped hyperbolic n–manifolds of finite volume to non-compact strictly convex projective n–manifolds of finite volume. We show that Weeks’ algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.
متن کامل